ML Roadmap

: - : BRAIN AND COGNITIVE
By the Brain and Cognitive Society, lITK SOCIETY
hes.iitk@gmail.com T KANPUS
Discord

So You Want To Get In On The Al Buzz?

Even your grandmother probably has heard about ChatGPT by now, and the world is
constantly muttering words like Al, Machine Learning, Transformers, Convnets,

Neural Networks, GPT, and god knows what else.

This guide contains an extremely large list of resources, designed (hopefully) not
only to help you figure your way out around the ML world but also to help you find
out where you might fit into it. If a section feels too daunting, try coming back to it
later. If you find an overly interesting section, go deeper into it. We do not include a
timeline because you really shouldn't feel the stress of falling behind some notion of
an ‘average’ learner. So feel free to spend an hour a day on this if you think
discipline is your game, or maybe finish it over a couple of all-nighters and some
nice strong coffee.

This guide tries to cover a large variety of resources at the cost of having a specific
learning plan or path. This means you should cherry-pick resources from here and
figure out your own learning plan. Try out different things, but stick to whatever you
like best. There will likely be considerable overlaop between resources, so you should
skim or gloss over things whenever you need them. The other advantage is that even
if you've already started with your ML journey, you can still find useful things here if
you want to get better at some specific topic. Honestly? The absolute worst way to

go about this guide would be to check things off one by one.

mailto:bcs.iitk@gmail.com
https://discord.gg/Jx2ZgjCsRD

Quick Guide to the Guide:

1. Every section has a little writeup about what the goals of the section are along
with a list of resources of various types - books, online courses, Youlube videos,
(reddit threads?). You need not go through all the resources. Use the type of
resources you like best. Someone had to research a lot to make sure you get the

benefit of this choice, don't waste it.

2. The Words List is something you should read AFTER you're done with the resources
of a section. You should ot the very least recognise all the words in the word list, and
be able to Google out relevant documentation within a search or two. It is essentially
a very basic form of self-assessment. If you do not recognise a word or two from the
list, don’t panic. You can just use Google to read up about it. If this happens for most
of the words though, then maybe you didn't pay enough attention or need to read

more resources. Oh also they are in no particular order.

3. An asterisk on a resource(*) means the resource is not free. I've tried to stick to free
resources as much as possible, but sometimes there's a paid resource that is worth
mentioning. Of course, if you're familiar with r/Piracy, then that asterisk probably

doesn’'t mean much to you does it?

4. Stay away from ChatGPT while you are still learning things. ChatGPT, Copilot and
other Al tools will be your best lieutenant in the real world, but if you try to learn
alongside it, you will either feel like a fraud or a god (depending on your
self-confidence) and neither is great for learning. Google a lot. Read a lot. If you don't
understand something, ask how to understand it better. But do not use ChatGPT to
gloss over it. There'll be plenty of time for you to use LLMs on the job, and the best
part of ChatGPT is that unlike googling for things, the learning curve to get the most

out of it is tiny.

5. This is not the best guide for ML out there. There doesn’t exist such a thing. How

you learn best is something rather unique to you, and to tailor an experience

specifically for you is frankly... quite hard. If you don't like the way a resource is, ask
for alternatives. One of the good things about the booming popularity of ML is that
you can always get help. Mix and match, swap out things you don't like, swap in

things you do.

Section 1: Python

While there exist multiple languages that are used by Machine Learning Engineers,
the best one to start with, and the most widely used one is without a doubt, Python.
Which is great if you've never coded before, because Python is extremely easy as a
first language. The syntox is extremely simple, and you will mostly just feel like you're

explaining what you want in English.

You do not need to become a Python professional before you can start with ML
though. Understand the basics, how to use the standard data structures like lists,
tuples and dictionaries, how to write a function, maybe the very basics of objects
and classes. When you feel like you have a handle on the language, feel free to go to

the next section.

We know. It is not the fastest language, but frankly, people far smarter than us have
already written down Python libraries in C to handle anything that needs speed. If

you feel like you can do it faster than them, then you can always learn C later.
Watch Out For!

e We mean Python 3. Python 2 is deprecated and you should NOT be writing any
new code in Python 2. Also Python is offered by various distributions, and |
recommend Anacondq, since it's one specifically themed for data science, and
has great environment support.

e If you are coming over from a different language, try not to blindly translate

the way you code in that language to Python, instead put some effort into

https://www.anaconda.com/

understanding how to write Pythonic code. This will make things much more
fun and much simpler.

e You don't need an IDE, but it might be good to set one up properly. |
recommend VS Code, but there’s tons on offer. More importantly perhaps, you

should get used to Google Colab. It's a cloud based environment (so it runs on
a potato PC) where the majority of ML and DS related work happens.

e There are two main mediums of working with Python code - one is the
standard script files (.py), the other are Python notebooks (.ipnyb). Scripts are
better when you're just starting with Python, but which form factor you use
more often depends heavily on what exactly you're doing in the ML
community. For now, try to be sort of comfortable with both environments.

e The resources on NumPy, Pandas and Matplotlib can be done later. You'll run
into these libraries in Section 3. But they're quite fun to play with, so if you're
falling in love with Python, then maybe it's worth figuring out how to get xkcd

mode working in matplotlib as well?
Resources

e If you don't know programming -

o Python Like You Mean It - Ryan Solanski, aimed specifically for STEM

applications[EBook]
o Automate the Boring Stuff - [EBook]
o The Hitchhiker's Guide to Python - A very Pythonic-python practice

handbook [Interactive Book]
o Think Python - Allen B. Downey on O'Reily [Book*]
e If you know programming
o The Official Python Tutorial - [Docs]
o Learn Python in Y Minutes - [Digital Book]

o Tiny Python Projects - Tiny Python Projects. Duh. [Tutorial]

o Ultimate Python Study Guide - [Github]

o Codewars - Coding challenges across various levels of difficulty
[Website]

e Tools that might help everyone

https://code.visualstudio.com/
https://colab.research.google.com/
https://www.pythonlikeyoumeanit.com/
https://automatetheboringstuff.com/
https://python-guide.readthedocs.io/en/latest/
https://www.oreilly.com/library/view/think-python-2nd/9781491939406/
https://docs.python.org/3/tutorial/
https://learnxinyminutes.com/docs/python/
https://tinypythonprojects.com/
https://github.com/huangsam/ultimate-python
https://www.codewars.com/

o Python Tutor - Lets you visualize the step by step execution of code
o r/learnpython - The Reddit for advice on learning python
o Beyond PEP-8 - Raymond Hettinger, Best practices for beautiful

intelligible code
e NumPy, Pandas, and Matplotlib -
o The official quick start guides for NumPy, Pandas and Matplotlib [Docs]

o Python Data Science Handbook - The basic handbook on Data Science
with Python. [E-book]

o 101 NumPy exercises for Data Analysis [Tutorial]

o Pandas from the Ground Up - Brandon Rhodes at PyCon 2015 [Youtube]

Word List

File modes, filter(), Generators, Immutability, List Comprehension, map(), Variable
Scope, Vectorization, cmap, np.linspace(), reshape(), merge(), Data Munging,
Broadcasting, Truth Values of Non-Boolean Objects, Lambda Functions, zip(), any(),

Section 2: Math

Machine Learning is basically math. Sure it may seem (big hefty emphasis on seem,
the deeper you go, the more you realize this entire field is just Linear Algebra and
Probability on steroids) unnecessary, but without math, you will never really be able
to build any intuition about what is going on. And without intuition, you won't really
be designing any models, even if you may be able to follow my instructions. Even if
you would like to follow a top-down approach to learning ML, I'd still recommend
doing this section before the last one. Because a solid understanding of the math
involved can be the difference between the algorithms feeling pointlessly vague or
feeling trivially simple. What fun is learning ML if you can'’t at the very least try to

explain some part of its black box?

https://pythontutor.com/
https://www.reddit.com/r/learnpython
https://www.youtube.com/watch?v=wf-BqAjZb8M
https://numpy.org/doc/stable/user/absolute_beginners.html
https://pandas.pydata.org/docs/user_guide/10min.html
https://matplotlib.org/stable/users/explain/quick_start.html
https://jakevdp.github.io/PythonDataScienceHandbook/
https://www.machinelearningplus.com/python/101-numpy-exercises-python/
https://www.youtube.com/watch?v=5JnMutdy6Fw

Thankfully though, the average ML Engineer needs pretty basic math. You need to
understand multivariable calculus, linear algebra and some probability and
statistics. There's really 3 parts to this as | see it, there's the theory, the intuition, and

the application to ML.

Data in Machine Learning contexts is frequently represented using n-dimensional
arrays, and Linear Algebra helps you understand what mathematics looks like when
playing around with such things. Multivariable calculus comes in when you have
functions on these arrays and need to figure out a way to optimize them. Finally
probability theory comes in to explain why these ML algorithms work, and what
exactly is being optimized. Hopefully ofter you're done with these resources, you'll be

able to better phrase the importance of each of these domains.

For the most part, if you truly paid attention during the first year math courses at
IITK, you can assume you have basic math knowledge (in terms of theory) and use a
resource like the Mathematics for Machine Learning book. But if you didn't (honestly
very understandable), go easy on yourself and read a book or do a course on the
topics to understand the basics before moving on to the applications if you don't

want to handwave every single thing.

(For readers in the Mathematics and Statistics Department, your second year
courses will usually cover each domain in really solid detail. Feel free to rely on those
for theory.)

Resources

e 3BluelBrown - Arguably one of the best math explainers out there on Youlube.
Definitely the best way to get a solid intuition on anything math. He already
has playlists on each of these domains, and on Neural Networks itself
[Youtube Channel]

e MIT OpenCourseWare - If MIT is doing it, surely there must be something right.

Since course offerings are updated, we are not linking a particular course. But

these versions are considered quite good at the time of writing this -

https://www.youtube.com/c/3blue1brown
https://ocw.mit.edu/

o Linear Algebra Fall 2011 - Taken by Gilbert Strang himself. His book on
the subject is considered one of the Bibles. [Course]
o Probabilistic Systems Analysis And Applied Probability - A bit harder

than necessary, especially if you don’t have a math background, but

extremely rigorous and comprehensive as a result. [Course]

o Matrix Methods - Also taken by Gilbert Strang, and strings the three

branches together to make a course more designed for its specific
applications in ML [Course]

e Deeplearning.Al's Mathematics for ML - DeepLearning.Al will come up later as

well, considering it basically gives us the bible for deep learning and neural
networks, but their math offering is pretty solid too. [Online Course]

e Jon Krohn's Youtube Channel - Weightlifter who teaches math. Surely that's
enough to convince you. He has playlists on all three Linear Algebra, Calculus
and Probability. | think he's done a particularly fabulous job with the Calculus
[Youtube]

e Mathematics for Machine Learning - Good if you feel like you already have
foundational math knowledge in these areas. It tries to stitch together these
three into ML and does a great job at it. Might be too hard as a first read
though. On the other hand if you have really strong fundamentals in math,
you might as well ignore a book like this since ML courses will also cover a lot
of this stuff. [Book]

e [Flements of Statistical Learning - Often comes up as a sister to the previous
resource. If you don't like one you'll like the other sort of a thing. It still
assumes a lot of foundational math knowledge though. Also believe this one’s
better if you're specifically going to focus more on the Data Science elements

(see section 4) [Book]

If you fell in love in this section, then good news for you, you could get into extremely
pure-ML research. Like the kind of people who design new architectures and stuff.
Solving questions like how to make inherently better and faster models, regardless

of the actual data. If you want to go forward in this direction, you should dive deeper

https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/
https://ocw.mit.edu/courses/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/
https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
https://www.deeplearning.ai/courses/mathematics-for-machine-learning-and-data-science-specialization/
https://www.youtube.com/@JonKrohnLearns/playlists
https://mml-book.github.io/book/mml-book.pdf
https://hastie.su.domains/Papers/ESLII.pdf

into the math, and possibly also on how things are implemented in low level

languages. Try resources like Computational Linear Algebra [Youtube Playlist]
Word List

Basis of a Vector Space, Eigenvalues and Eigenvectors, Partial and Total Derivatives,
Lagrange Multipliers, Gaussian Distribution, Prior and Posterior Probability,
Orthonormalization, Poisson’s Distribution, Correlation, p-value, Confidence

Intervals, Lagrange Interpolation, Central Limit Theorem
Foundational Machine Learning

It's time to actually get to the ML bit. To make things easy, there is universal
agreement that Andrew Ng has the single best foundational ML offering. Pick it with

your eyes closed.

Most of you who have started off on this journey will probably do the CS771 course
offered at IITK. It is a perfectly great course, but by no means is it a substitution for
this section. It has a more theoretical nature for the most part but does not cover
quite enough for it to be considered comprehensive. Do | still recommend that you
take Purushottam Kar’s offering though? Absolutely. He's a pretty brilliant man, and
seeing his excitement for the subject, along with his insights in specific problems has

been one of my best experiences with a course in IITK.

Usually guides will try to split this section into more specific sub-sections - Linear
and Logistic Regression, SVMs, CNNs, etc. Most resources in this section will already

do this internally, so | am not breaking it up in the guide itself.
Resources

e Andrew Ng's Courses - If there's a gold standard for this section, it has to be
this one. ML nerds will usually call his courses the ‘Holy Trinity of ML'. Keeps

things rigorous but never makes it too mathematical either.

o Machine Learning Specialization - Part One of the Trinity [Course]

o Deep Learning Specialization - Part Two of the Trinity [Course]

https://www.youtube.com/playlist?list=PLtmWHNX-gukIc92m1K0P6bIOnZb-mg0hY
https://github.com/purushottamkar/cs771
https://www.coursera.org/learn/machine-learning
https://de.coursera.org/specializations/deep-learning

o Tensorflow in Practice - Part Three of the Trinity [Course]

o Stanford CS229: ML - His lectures at Stanford, much more mathematical
than the above courses and hence only meant for you if you want to
really get into theoretical ML. [Youtube Playlist]

e Yoshua Benigos Deep Learning Bible - The other extremely common resource
which is thrown out on every reddit. It is quite mathematical and a bit dated in
my opinion. But if you say you've read it properly you'll get quite a bit of
instant respect. [Book]

e Dive into Deep Learning - E-book that is surprisingly comprehensive and

up-to-date with respect to code implementations (PyTorch, Tensorflow and JAX
as well). | don't believe it is the best when it comes to intuition, but it is great if
you're coming back to give ML a second shot and have a sort of hazy
knowledge about things. [E-book]

e fast.ai - This one is also a really good resource, but in my opinion its fatal flaw
is that it teaches the subject based on its own coding framework, which is kind
of non-standard. Does do a great job of teaching things in the top-down way
though. [Online Course]

e MoathematicalMonk - | was not exactly sure about whether to put this in the

math section or this one, but | think it is more of a foundational ML playlist,
since it explains ML concepts and the mathematics of how it works. It's got
that Khan academy style vibe. Again | only recommend this for those more
mathematically inclined. [Youtube Playlist]

e Neural Network Playground - This isn't a resource in itself, it is more of a

companion tool. Effectively this lets you tweak the parameters of a basic
neural network and see the effect it has on your model's predictions on some
nice data. If | could learn ML from scratch again, this is where | would build the

intuition for it.

If you're interested in something even more mathematical, something to help you
design new ML algorithms, you might want to check out Deep Learning Architectures

by Ovidiu Calin. There's also Geometric Deep Learning, which hopes to be the next

big thing, even if our hardware isn't quite good enough yet.

https://de.coursera.org/specializations/tensorflow-in-practice
https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU
https://www.deeplearningbook.org/
https://d2l.ai/
https://www.fast.ai/
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.58946&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://link.springer.com/book/10.1007/978-3-030-36721-3
https://geometricdeeplearning.com/

Word List

Logistic Regression, SVM, One-hot encoding, Regularization, Norms, Decision Trees,
RNNSs, kNNs, PCA, Confusion matrix, Cross-validation, Bias, Clustering, Leaky RelLU,

Gaussian Kernel, MLE, Decision Boundary
Section 4: Practice

This isn't a section to do all at once, rather I'd encourage you to interleave it once

you've started to get a handle on Section 3.

There’'s so many datasets available onling, you just have to put in the effort to find it
sometimes. If you don't give a shit about house prices, then don't. Find something

better to regress on.

This is also the part of the guide where you actually learn to do solid Exploratory
Data Analysis. EDA is simply gathering insights about your data so as to help you
decide things like what variables are relevant, what kind of ML models might work
well on this dataq, if some variables can be changed into more useful ones, etc. It's
something best learned through practice. Your first couple of practice problems will
probably have you feeling lost about what to do. You'll probably then want to see
what other people did with the data, and see how they make inferences using data
analysis to decide how they want to solve the problem. And then slowly you'll learn to
recognise the patterns in new datasets and gain confidence on what to do when you
see a problem without needing the help of others. If you dont understand
something, ask! Or maybe just fuck around in a copy of the code and find out what's

going on. This is how | personally learned EDA.

But if you want something more concrete, I've linked up some resources specifically

for EDA in this section too.

A note on MNIST: If you decide to google datasets to practice on, you're likely to run

into MNIST at some point. Particularly, MNIST Handwritten Digits. These are rather

old and small datasets, and | don't think they are still worth doing in the modern

10

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

day. The direction of Al growth has always been towards larger and larger datasets,
and working with MNIST datasets will give you a false sense of understanding, since

these are very easy to get amazing accuracy on with hardly any tweaking.

A note on Kaggle: Kaggle is a learning tool. It is not a project. Think of Kaggle more
like an ML simulator. It's a cleaned out experience best for learning, but in the real
world there's other things you'll have to learn, like scraping and cleaning data,
accuracy vs computational cost tradeoffs, constraints on every part of your pipeline
and so much more. | highly recommend not relying on Kaggle alone, especially after
you're done with Section 3 and instead doing a more serious project from scratch.
Without the idea pre-planted in your head in the form of a contest and without the

wealth of submissions available to you.
Resources

e Kaggle - You will likely need to use Kaggle at some point of time in your ML
journey. It's kind of like an analogue to codeforces but for ML. There's a solid
array of contests and a very active community, including those Chinese dudes
who are going to be better than you at everything so you can cry about your
life. The unfortunate downside of kaggle is that because it is so popular, doing
a project here feels more like processing a mass-manufactured product. These
are some contests that are either extremely common or are quite liked by me.

o Titanic - Where everybody begins. The first contest that almost
everybody who knows ML gave, if they gave one. [Contest]

o House Prices - Another extremely common contest. Honestly bored of

seeing this everywhere though. [Contest]

o Taxi Fare Prediction - This has also been around a long long time,

although | don't see it being talked about nearly as much. [Contest]

o San Francisco Crime Claossification - | love this one. The amount of

things you can do with this dataset is brilliant. The domain is slightly
unfamiliar, but relatively easy to get insights on. [Contest]

o Gene Expression Dataset - Something a little biological, since people

don't appreciate the biological applications of ML nearly enough. You

11

https://www.kaggle.com/
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/competitions/new-york-city-taxi-fare-prediction
https://www.kaggle.com/competitions/sf-crime
https://www.kaggle.com/datasets/crawford/gene-expression

can use it to classify patients with leukemia, or maybe something else

entirely? [Dataset]

o Women's Shoe Prices and Men's Shoe Prices- Feel like brand X is totally

overpriced? Or maybe you want to prove the existence of the pink tax?
These datasets were made for you.

e Google Datasets - Google has made a bunch of datasets available to the
public. Its popularity is on the rise, and the quality of datasets is quite good.
Totally worth trying to find a good dataset to work with here.

e Doata is Plural - A newsletter that curates a lot of really interesting datasets.

e r/datasets - Reddit never lets you down huh.

e Exploratory Data Analysis Resources -

o Exploratory Data Analysis - John Tukey is considered the father of EDA,
so this is one of the OG greats when it comes to this subject [Book?]

o Think Stats - Allen Downey is usually the other recommendation that the
Internet agrees on. It's like a Primer for Probability and Statistics in ML.
[Book]

o The Leaderboard and Discussion Tabs in Kaggle - There's always a

wealth of information here if you can sort through it.

Word List

Virtual Environments, gdown, GPUs and TPUs, EDA, Heatmaps, Boxplots, Violin plots
Cross-Entropy Loss, NLP, CV, RL, Gradient Boosted Decision Trees, Imputation, tSNE

The End. Almost.

You are at the end of this guide. If you've made it this far, you're ready to try your
hand out at more serious projects, so it's time to search for project ideas. Or maybe
you want to become the Kaggle master and absolutely wreck contests. | hope you
also got a better idea of where in the ML pipeline you think you might fit in, whether
that's designing architectures, ML ops, DS, NLP, Vision, RL, BioML or whatever. In any
case, we wish you the very best of luck.

In case you hated this roadmap, here are some others -

12

https://www.kaggle.com/datasets/datafiniti/womens-shoes-prices
https://data.world/datafiniti/mens-shoe-prices
https://research.google/resources/datasets/
https://www.data-is-plural.com/
https://www.reddit.com/r/datasets/
https://link.springer.com/referenceworkentry/10.1007/978-0-387-32833-1_136
https://greenteapress.com/wp/think-stats-2e/

e P Club's ML Roadmap - Made with love and memes by our sister club

e ZuzooVn's Roadmap - A Github repo that deals with the roadmap question in a

different style
e An Interactive, Visual ML Roadmap - if you want a roadmap organized in a

flowchart.

Haoppy Learning!
Any doubts? Shoot ‘em up on discord

- Debarpita Dash(dd1904)

- Manasvi Nidugala(manasvi_nid)
Sagar Arora(qu.bit)

Udbhav Agarwal(Udbhav_agarwal)

13

https://docs.google.com/document/d/1zdO0D2Yk55yEEOPe3jGCmkLSVIkIJEUPh85YCUJ-68Q/edit?usp=drive_link
https://github.com/ZuzooVn/machine-learning-for-software-engineers?tab=readme-ov-file#the-daily-plan
https://whimsical.com/machine-learning-roadmap-2020-CA7f3ykvXpnJ9Az32vYXva
https://discord.gg/Jx2ZgjCsRD

